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Summary. The system consisting of two Morse oscillators coupled via either a 
potential or a kinetic quadratic term is considered. The corresponding classical 
equations of motion have been numerically integrated and the initial conditions 
have been systematically analyzed in the regime of low total excitation energy of 
the system. Particular attention was paid to the full characterization of an 
intermediate type of motion, herein called transition mode, which appears at 
total energy values in between those typical of normal modes and those where 
local and normal modes coexist. A previously proposed perturbative approach 
(Jaffé C, Brumer P (1980) J Chem Phys 73:5646) is reanalyzed and compared 
with the results of numerical experiments, with the purpose of lending further 
support to the existence of transition modes. 
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1. Introduction 

The local mode model was first proposed in order to provide a simple explana- 
tion of the remarkably simple spectra in the high overtone region of organic 
molecules containing XH bonds (X = C, O, N, . . . )  [ 1]. The subsequent develop- 
ment of the thermal lensing [2] and photoacoustic techniques [3] has allowed one 
to test this model more precisely; Raman spectroscopy [4] and near infrared 
circular dichroism [5] have also been employed for this purpose. 

The theoretical justification of the local mode behavior came later. For 
example, for systems with 2, 3, or 4 equivalent BA bond stretchings, described as 
Morse oscillators and harmonically coupled, Mills and Robiette [6] proved that 
the local mode behavior takes place at about the second overtone (v = 3). This 
result is obtained by a quantum perturbative treatment starting either from a 
normal mode basis set or a local mode basis set. The equivalence of the two 
approaches was first demonstrated in a letter by Lehman [7a]. A nice generaliza- 
tion of this theory is given in [7b, 8, 9]. In parallel, the classical equations of 
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motion for an ABA molecule (without the bending motion) were reconsidered, 
both numerically and analytically, in order to characterize the types of molecular 
motions taking place under the influence of nonlinear forces [ 10-13]. The above 
authors considered the behavior of various observables in their numerical 
experiments, namely they have presented diagrams in configuration space (Lissa- 
jous maps) [10, 11], diagrams in phase space such as the Poincaré surfaces of section 
[10, 12], and finally the time dependence of individual oscillators energies [13]. In 
both [ 12] and [13] the results of the numerical experiments were compared with 
an analytical approach consisting in the development of the interaction potential 
of the two bonds as a Fourier series, whose individual terms depended upon actions 
and angles of the isolated Morse oscillators. Recently Li et al. [ 14] have made use 
of bifurcation theory to characterize the fixed points of the Hamiltonian of two 
coupled anharmonic oscillators, and have described the normal to local transition 
with respect to coupling strength and dissymmetry of the two bonds. 

Further developments of the theory comprised the study of anharmonic 
stretching modes interacting with bendings and rotations. In particular, the 
consideration of Fermi resonance among YXH bending and XH stretching 
[15, 16] has allowed one to explain satisfactorily the behavior of bandwidths in 
the progression of benzene overtones up to Av = 10 [15, 17], and also to define 
the nature of extra bands at a specific overtone order in haloforms [16]. 
Furthermore, the rotational structure of overtone bands was also studied both 
theoretically and experimentally [18-21]. The importance of these studies for 
fast kinetics was pointed out in all the above papers and has been recently 
reviewed by Hutchinson [22]. 

In this work we go back to the classical dynamics of the simple ABA system, 
with the purpose of studying more closely the transition region between normal 
modes and local modes. In Sect. 2 we will present some numerical experiments, 
where we varied systematically all possible initial conditions, and analyzed the 
results in terms of most of the various kinds of diagrams described above. In 
Sect. 3 we will interpret the new results obtained in Sect. 2 using the model 
developed by Jaffé and Brumer [12], who analyzed the coupling term as a 
function of local mode properties. By these two approaches, i.e., numerical 
calculations and perturbative treatment, we have characterized a new kind of 
modes which have an intermediate behavior between normal and local modes 
and which we have called "transition modes". They appear at energies lower 
than local mode threshold and coexist with local and normal modes. 

2. Numerical experiments 

As we have already mentioned in the introduction, the purpose of this paper is 
the characterization of vibrational modes for two linearly coupled anharmonic 
oscillators in the relatively low energy region, far from dissociation. We have 
achieved this by numerical integration of the classical equations of motion 
derived from the Hamiltonian: 

~~p2~2m } H = i =  1 +Di[1 --exp(l,--i;o)] 2 +K(ll-llo)(12--12o) (1) 

Here l; are the instantaneous bond lengths, whose equilibrium values are 6o; P; 
are their conjugated momenta; m is the reduced mass for both bonds. We define 
the parameters for the Morse potential Di and ai in terms of the mechanical 
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wavenumber (oh and anharmonicity constants X~ (cm-l )  [11]: 

hc(0h ~ 

Di= 4Z i (2) 

ai= ~ (3) ~/ h 

(h = Planck's constant, c = speed of light). Even though our purpose is not a 
detailed comparison with experiment, we chose values close to those for aliphatic 
CH's, namely C0~=(0h=3000cm -s and ~ s = Z 2 = 6 0 c m  -~, m = l a . m . u . ,  
Iso =/20 = 1.0 ~.  

We have considered different values, both positive and negative, for the 
interaction force constant K and show results for K = __+ 0.1 mdyne//~, neglecting 
at first any kinetic coupling. The equations of motion were integrated by means 
of a 4th-order Runge-Kut ta  algorithm with a stepsize of 0.01 femtosec and total 
integration times of up to 4 picosec. The numerical results thus obtained were 
examined with the aid of different plots: 

(a) time evolution of individual oscillator energies, defined as: 

E~ (t) = p~/2m + D; ( 1 - exp( - a; (l; -- li0))) 2 

(b) time evolution of stretching coordinates li(t) 

(c) Poincaré surfaces of section (PSS), namely plots of the values 
Al2(O = 12(t) -/20 and p2(t) at all times t for which Al~ = O, pl > 0 

(d) plots of the period T of Ei(t) vs. the maximum energy difference AEmax 
between the two oscillators achieved during time evolution. 

In order to be able to discuss the problem of the title of the present paper, 
let us first consider the definition of normal modes and local modes, in the 
presence of anharmonicity and at different values of total energy 
ET = Es (0) + E2(0). 

(a) Normal modes: It has been pointed out that, when one plots individual bond 
energies vs. time, one sees that energy is exchanged between the two osciUators 
during a period T in such a way that the bond energies' averages over long times 
are equal: (Es (t) > = (E2 (t)), as illustrated in Fig. 1A [ 13]. Another characteristic 
of normal modes is "phase locking" of the two oscillators. We remark that a 
requisite similar to this has been assumed in numerous textbooks as the most 
characteristic of normal modes, namely a fixed phase relation between oscillators 
[23]. Indeed, for the Hamiltonian studied here, if one plots the bonds' lengths ls (t) 
and 12(t) vs. time one finds that they vary periodically with a double periodicity: 
a short period in the range of femtoseconds that corresponds to the oscillations 
of the individual bonds and a longer one, that we have called T, in the range of 
100 to I000 femtosec that corresponds to amplitude (and energy) modulation of 
bond oscillations. Such a modulation is originated by the fact that the two CH 
oscillators, due to anharmonicity, possess slightly different frequencies. In the case 
of normal modes one can notice from Fig. lA that l~ (t) and 12(t) always differ by 
less than a short period, that is to say their average frequency over long times is 
the same (o91 (t)} = ( ( 0 2 ( 0 )  (in fact normal modes can be described as originated 
by a nonlinear resonance between two local oscillators [12]). 
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Fig. lA,B. Oscillators energies and lengths vs. time for normal  modes (A) and local modes (B). Total 
energy E r = 9000 cm -1, K = --0.1 mdyne//~; (A) AEo, = 5500 cm -1, A; (B) AEiù = 6600 cm, A 

(b) Local modes: These modes are characterized by the fact that one oscillator 
has always a higher energy than the other [13], and that there is no "phase 
locking" between ll(t) and lE(t) (Fig. Iß): oscillator number 2, at lower energy, 
gains a whole short period of oscillation with respect to oscillator number 1 in 
every long period T. A consequence of this is that the averages of the oscillators 
frequencies over times greater than T are as follows: (o~ l ( t ) )>  (co2(t)). In 
conclusion one can say that the nonlinear effect leading to energy modulation is 
still present, whereas the nonlinear resonance between the two oscillators is not. 

2. I. Varying values of the total energy ET 

In order to characterize the normal mode- local  mode transition we carried out 
numerical experiments at different total energies from Er = 500 cm -1 up to 
Er = 15,000cm -1 (far from dissociation and chaotic regimes). A meaningful 
choice of the PSS obtained for the cases K = __+ 0.1 mdyne/Ä is proposed in Fig. 
2. Different trajectories in the PSS correspond to different initial conditions. In 
particular we varied AEiù = E l ( 0 ) - E  E(0) while taking the two oscillators at 
their potential minimum at time t = 0, moving either in the same direction (S) or 
in opposite directions (A). Alternatively one can set AEIù = 0 and vary the initial 
position of one of the two oscillators with respect to the equilibrium position; it 
can be shown that similar trajectories are obtained. Figure 2 shows the three 
kinds of PSS that we found, which contain, to a different extent, the different 
kinds of modes. 

(a) At low energies (Er < 1500 cm - l ,  Fig. 2A, 2D), there are two families of 
curves surrounding two stable fixed points, one family generated from initial 
conditions (S), the other one from initial conditions (A). The two stable points 
have phase space coordinates P2 > 0, A12 = 0 and P2 < 0, A12 > 0, respectively. 
They correspond to the purely symmetric normal mode and to the almost pure 
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Fig. 2A-F. Poincaré surfaces of section for two coupled Morse oscillators at three different values 
of the total energy ET; (A-C) K = -0.1 mdyne/A; (D-F) K = +0.1 mdyne//L Both oscillators start 
from the vibrational equilibrium. Ordinate axes are P2 (units: a.m.u. A femtosee-]). Abscissas are 12 
(units: A). A E r =  1000cm -1. lower half (lh): antisymmetric normal modes, higher half (bh): 
symmetric normal modes. In both cases the curves are ordered from inside with 
AEgù = 0, 200, 400, 600, 800 cm -].  Separating eurve: AEgù = 1000 cm-L B E r = 2000 em-L lh: anti- 
symmetrie normal modes, from inside: Elù =0, 400, 800, 1200, 1600cm-L bh: symmetrie normal 
modes and transition modes. Central dot: AE«ù = 0 cm -1, symmetrie normal mode. Inner eouples of 
circles: AEgù = 4-800, 4-1200 cm -],  transition modes. Bilobed eurve: AEiù = 1600 em -1, symmetric 
normal mode. Separating curve: AEgù = 2000 cm-L C E r = 4000 cm-L lh: antisymmetrie normal 
modes, from inside: AE,.ù = 0, 1000, 2000, 3000 cm-]. bh: symmetric normal modes, transition modes 
and loeal modes. Central dot: AEgù = 0, symmetrie normal mode. Inner eurves, from inside: 
AE~ù= _+3000, +4000cm -],  S (transition modes), 4-2000, +1000cm -],  S (local modes). D 
E T = 1000 cm-1. lh: antisymmetric normal modes, bh: symmetrie normal modes. Ordering as in A). 
E E T = 2000 cm-]. lh: antisymmetrie normal modes and transition modes. External bilobed eurves: 
normal modes for AEg, = 0 and 400 cm-] eoineident, 800 cm-i .  Inner eouples of eireles: transition 
modes, for AEg, = _+ 1600, -I- 1200 cm-L hh: symmetrie normal modes, AEgù = 0, 400, 800, 1200, 
1600 cm- ] (from inside). F Er = 4000 cm- ]. bh: symmetrie normal modes from AEi» = 0, 1000, 
2000, 3000cm - l ,  S, and 0, 1000cm -] ,  A. hh:Inner eurves, from inside: AE#,= 4-3500 and 
___4000 cm -],  A (transition modes), AE~n = 4-3000 and 4-2000 cm -],  A (local modes) 

a n t i s y m m e t r i c  n o r m a l  m o d e  respectively,  since the sign o f  Pz is the  same  or  
oppos i t e  to tha t  o f  p l .  Th e  PSS o b t a i n e d  wi th  AEin = E r  s u r r o u n d s  the  fami ly  o f  
curves  o f  symmet r i c - type  (K  < 0) or  a n t i s y m m e t r i c - t y p e  ( K  > 0) n o r m a l  m o d e s  
a n d  fo rms  a separa t r ix  be tween  the  two families.  Al l  m o d e s  are  n o r m a l  m o d e s  
a n d  have  the charac ter is t ics  i l lus t ra ted  above .  A t  these va lues  for  E r ,  b o t h  the 
symmet r i c  a n d  a n t i s y m m e t r i c  n o r m a l  m o d e s  are stable,  i n d e p e n d e n t l y  o f  the sign 
o f  K. M o r e o v e r  orte c an  not ice  tha t  in  b o t h  cases A a n d  D o f  Fig.  2 ( K  < 0 a n d  
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F i g .  3A-C. Plots of the period of energy exchange, T, vs. the maximum energy difference, AEm, x. 
K = -0,1 mdyne//~. A E r = 1000 cm-1; 0: initial symmetric excitation S; ©: initial antisymmetric 
excitation A. B ET = 2000 cm-i; ©: A; O: S (in order of increasing initial energy difference AEeù); 
[3: S (in order of decreasing AEg,). C Er = 4000 cm-1; O: A; ©: S (in order of increasing AEgù); 
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K > 0) there exists a "purely symmetric" motion that persists for an infinitely 
long time and is represented by the point in the PSS. In a paper written in 1961, 
Thiele and Wilson [24] pointed out, from basic mathematical  properties, that 
two coupled anharmonic oscillators do admit a "purely symmetric" solution but 
not a purely antisymmetric one. We report in Fig. 3A the plot of  the period T 
of energy exchange and phase locking vs. AEmax for K <  0. There are two 
monotonic branches corresponding to symmetric and antisymmetric normal 
modes. 

Before describing the hext two regimes, we point out that in the literature 
only one of  them is considered at higher E r  Its PSS appear as presented in Fig. 
2C and 2F. For  K < 0, the symmetric mode is unstable, namely it is represented 
by a saddle point in the PSS, whereas the antisymmetric mode contains a center 
and is surrounded by normal mode trajectories. (The system for K > 0 behaves 
in a parallel way but hefe the "purely symmetric" mode is stable and there is a 
saddle point in the region of  antisymmetric modes.) The circular shaped curves 
near the center (Al2 = 0,p2 = 0) correspond to local modes of bond number 1, 
and the circular shaped curves near the maximum external circle correspond to 
local modes of bond number 2. 

(b) At interrnediate energies ( ~ 1750 cm-1 < E r  ~< 3151 cm -1 for 
K = - 0 . 1  mdyne/./k and ~ 1750 cm -1 < E r ~< 2849 cm -1 for K = 0.1 mdyne//~) 
there is a new situation where the local modes are not present yet. The curve for 
AE,.ù = E r  is still separatrix between symmetric-type modes and antisymmetric 
ones (Fig. 2B and 2E). However, for K < 0 the purely symmetric mode (and for 
K > 0 the antisymmetric one) becomes unstable. There are two new families of  
curves corresponding to positive AEiù and negative AEiù, and close to the 
symmetric fixed point K < 0 and to the antisymmetric fixed point for K > 0 but 
not surrounding it. These curves are the PSS of a new kind of modes, which we 
call transition modes. These modes are local from the point of  view of  energies 
since the two oscillators have different mean energies; normal from the point of  
view of phase relation since the two oscillators are phase locked (see Fig. 4). 
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Fig. 4. Oscillators' energies and lengths vs. time for transition modes. Total energy E r = 2000 c m -  1, 
K = - 0 . i  mdyne/A.  Initial conditions: A Ei, = 400 cm, both oscillators at equilibrium, S 

Previously, Child and Halonen [11] and Lawton and Child [25] hinted the 
existence of some kind of "transitional" modes, but did not elaborate too much 
on the idea. Thus a comparison with that found here is not possible. PSS curves 
(of Fig. 2B) containing both the symmetric point and the transition curves (for 
K < 0) are of normal type. In Fig. 3B, T is plotted vs. AEmax for a case in this 
total energy region, with K < 0. It comprises three branches. The first one is 
obtained from initial conditions (A), it presents a monotonic behavior as in the 
lower energies case and corresponds to antisymmetric normal modes. Instead, 
with initial conditions (S), T vs. AEmax shows a cusp. The left branch corre- 
sponds to the transition modes, the right branch to the normal modes. The cusp 
is at the purely symmetric point. It is noted that transition modes are obtained 
at low AEi, (and low AEmax) and normal modes at high AEma,. Finally, we 
observe that for a transition mode the larger AEmax is, the greater the radius of 
the corresponding PSS curve is. Instead AEg. is not directly correlated with the 
data of the PSS (see caption of Fig. 3). 

(e) The final regime of local modes plus normal modes is obtained for 
K = - 0 . 1 m d y n e / Ä  at E r > 3 1 5 2 c m - l ,  and for K =  0.1mdyne/A at 
E r  > 2850 cm-1 (Figs. 2C and 2F, respectively). The curve relative to AEiù = Er 
is no more the separatrix between the families of curves corresponding to initial 
conditions (S) and (A); it is now similar to a circle and belongs to the family of 
curves classified as local in the literature. The "circles" outside the curve 
corresponding to AEi, = Er  are local modes and are obtained from both initial 
conditions (A) and (S). At relatively low total energies, there are also "circles" 
inside that curve. The latter correspond to persisting transition modes and are 
generated only from initial condition (S) or close to (S). These modes disappear 
with increasing Er. For K < 0 no normal mode can be generated from initial 
conditions (S) except the purely symmetric one at AEiù = 0. In Fig. 3C we report 
T vs. AEmax. We do not have anymore two curves for the two types of initial 
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conditions (S) and (A); regardless of the initial positions Il(0), /2(0) and 
momenta p~(0),p2(0) all points T vs. AEmax fall on a single cusp type curve 
which resembles the plot of the period of a pendulum vs. its energy [ 13, 26, 27]. 
When K < 0, the normal modes are on the left side of the cusp corresponding to 
the librational motions of the pendulum, and can be attained only by initial 
conditions of the type (A) for AEgn ~0 and for the various initial phase 
differences with AEgn--0. The local modes are on the rotational side of this 
pendulum-type curve and can be generated by both initial conditions (A) and 
(S). The cusp-type behavior for T was first predicted theoretically by Sibert et al. 
[13] from basic considerations on the pendulum (see also [12, 25, and 27]). Here 
we just found "experimental" evidence for that anticipation. The cusp-type curve 
represents weil only local and normal modes, whereas the residual transition 
modes correspond to the short almost constant branch. 

2.2. Study of another form of coupling 

We finally carried out numerical calculations on a system of two CH oscillators 
with both potential and kinetic coupling, namely we added to the Hamiltonian 
of Eq. (1) the term: 

G12plP2 with G12 = (l/mc) cos 0 (4) 

Since the purpose of this part is to study some physicaUy realistic model for 
CH2, one can take 0 as tetrahedral angle, mc as the mass of the carbon atom and 
K as + 0.1 mdyne//k according to that found on most empirical force fields on 
n-paraffines [23, 28]. In Fig. 5 we merely present three PSS at different value of 
total energy Er, each for every one of the three regimes described before. In this 
case, K and G~2 have opposite sign and thus tend to cancel the effect of one 
another. Thus the first regime, where only normal modes are present, survives 
only for very low values of total energy; at 700 cm -~ we already have the 
presence of transition modes. The point that gets unstable, giving rise to the 
transition modes and then local modes around 1000 cm-~ is the symmetric one, 
as if there were an effective constant K«r with negative sign. 

In conclusion we found that the normal modes to local modes transition, as 
total energy increases, comes with the presence of transition modes, where the 
two oscillators are phase locked but have different mean energies. To further 
characterize all types of modes that we have commented on, we finally observe 
that: 

(a) the same normal mode trajectory can be obtained either from a value AEg,, 
or from the opposite value -AEg,, In contrast, when for a given value for AEg,, 
a local mode trajectory is generated, the value -AEgn gives rise to a different 
local mode trajectory; 

(b) the same local mode can be obtained either from an initial condition A or S 
(with two appropriate values of Ein); 

(c) the transition modes are obtained only with an initial condition S if K < 0 
(or A if K > 0). These modes are inftuenced from the initial phase relation like 
normal modes are, but they have different trajectories when the sign of initial 
energy difference AE,., is changed, like local modes do. 



Normal/loeal modes in a system of two harmonically coupled Morse oscillators 329 

0.05 

0.00 

-005 
-0.08 

0.05 
B 

0.00 

-0.05 
-OlO 

0.08 
C 

0.00 

-0.08 
-0.18 

A 

r 
0.00 0.08 

t i 

i 
0.00 0.10 

~,.. c-.::: .-~:.:7i:-:;, ) 2' 

0.00 0.18 

Fig. 5A-C. Poincaré surfaees of section for two Morse oscillators eoupled both potentially and 
kinetically, at three different values for the total energy E r. K=+0.1mdyne/A;  G =  
-(1/36) a.m.u.-L Both oseillators start from the vibrational equilibrium. Ordinate axes are P2 
(units: a.m.u. A femtosee-1). Abscissas are Al2 (units: A). A E r =  500cm -1. lh: antisymmetrie 
normal modes, bh: symmetrie normal modes. In both cases the eurves are ordered from inside with 
AE, n = 0, 250 cm- i. Separating eurve at AE~n = 500 cm- L B ET = 700 cm- 1. lh: antisymmetrie 
normal modes, from inside: 0, 100, 350 cm - l .  bh: symmetrie normal modes and transition modes. 
Central dot: AEin = 0, symmetrie normal mode. Inner eouples o f  eiteles: AEtù = + 350, + 100 cm -1 
(from inside), transition modes; bilobed curve: AEiù =690cm -1, symmetrie normal mode. C 
ET = 2000 cm. lh: antisymmetric normal modes, from inside AEgù = 0, 500, 1000, 1500 cm-1, A. hh: 
local modes. Couples of  curves from inside: A E~ù = +2000, + 1500, + 1000, + 500, + 100 cm-1, S 

3. Perturbative treatment 

In  the l i te ra ture  the p r o b l e m  o f  two coup led  n o n l i n e a r  osci l la tors  has  also been  
ana lyzed  by  classical  p e r t u r b a t i o n  theory  [11-13] .  I n  this sect ion we c o m p a r e  
o u r  n u m e r i c a l  expe r imen t s  o n  the C H  2 molecu l a r  f r a g m e n t  wi th  ana ly t i ca l  
mode l s  a l r eady  used by  these au thors .  

G i v e n  a n o n - i n t e g r a b l e  H a m i l t o n i a n  H ( A l l  . . . . .  Alù,  Pi . . . . .  pù) ,  like in  Eq. 
(1), one  can  a lways express it as a f u n c t i o n  o f  ac t ion  a n d  angle  var iab les  4b» Ii 
o f  a n  in tegrab le  H a m i l t o n i a n  Ho so that :  

H = Z {H0(/ / )}  --I- iTV(I 1 . . . .  , In, 4Ji . . . . .  (aù) (5) 
i 

F o r  the sys tem discussed a b o v e  the m o s t  used choice  for  Ho is tha t  o f  u n c o u p l e d  
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nonlinear Morse oscillators [12, 13] (first term in Eq. (1)); the coupling terms of 
Eqs. (1) and (4) have usually been treated as the angle dependent term e V of Eq. 
(5). ~b i and/~ thus are the angle and action variables of two uncoupled Morse 
oscillators, whose expression can be found for exarnple in [12]. The two 
oscillators have frequencies c01 which are action dependent: 

~i(Ii) =oohi (1-- Ii/I a) Ia= ~ (6) 

where the constants co~, D«, m, and at have been introduced in the previous 
section. Ii are the actions at the dissociation energy. 

~~ Ho(Ia~) alone originates a pure local mode regime, since the two oscillators 
are completely independent: the oscillators cannot exchafige energy or influence 
each other to get a preferential phase relation. Only the term V(I1, I2,401, ~b2) in 
Eq. (5) can give rise to normal modes. A standard procedure [29] is to expand, 
in the coupling terrns of the original Hamiltonians of Eq. (1) or (4), actions and 
angles in Fourier series obtaining surns of terms containing cos(naq~~- n2~b2) 
over pairs (nl, n2) of relative prirne positive integers and all their multiples or 
harmonics [12]. When n1~ol- n2~2 = 0 for a given pair (nl, n2) a resonance is 
met, referred to as the nl :nz resonance. Usually each resonance is studied 
decoupled frorn the others. This is done, foir example, to study overlapping 
resonances [26, 29, 30] which become important at high energy in the study of 
statistical energy distribution. In the case presented here, where the two CH 
oscillators (identical for the numericalexperiments above) are at relatively low 
energies, only the 1 : 1 resonance is important. This resonance has already been 
indicated as responsible for the presence of normal rnodes at low energies 
[12, 13]. After Fourier expansion and decoupling of the nl = n2 = 1 resonance, 
the resulting total Harniltonian (in wavenumber units) adapted from [12] to our 
case is: 

eK ~, F2(Ia- j2)2], ~ 2(Ia-- Ja + J2) 2 ] 
H=hc 2ZJ2(J1 - Je) + 4~2rnc2z-- [½ In [ ~ a  ~/-äß2J rn L2Iä - IaJ1 + IaJ2J 

k =1 "2Iä ~ J2 2Id -- J1 -]- J2J -'~ c o s  NO 2 

Z IdJ \ ~ 1 -- 2Œ1Œ2 cos 02 + (Œ, Œ2) z 

where equivalence of the two oscillators has been assumed, namely Zl = •2 = Z, 
co~ = co~ = coh and I1 « -- I2 « --Ia, and where: 

«i = x/Ii/(2Ia -- I,) 

Equation (7) has been written with the canonical transformation mentioned in 
[12], namely: 

J1 = 11 --b 12 01 = q~l 

J2  = 11 02 = 4)1 - -  4)2 

and further terms depending on Jl only have been neglected, since J1 is an 
integral of motion and q~t its cyclic coordinate. 

Herein we have not yet reduced the Hamiltonian to an expansion around the 
resonant periodic orbit, as it is usually done to study overlapping resonances 
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[26, 30]. This procedure has also been employed to obtain an analytical expression 
of the resonance width, that is the extent of normal modes [11-13] and 
consequently the critical value of I» above whieh local modes are present [12]. In 
our treatment, instead, the coefficients of the angle dependent terms cos(k0:) are 
not evaluated at the resonanee (that is at J2 = J1/2): the e V part depends both on 
./2 and 02. By use of a graphic algorithm developed at the Department of Physics at 
the University of Milano, we have plotted the phase space curves in the plane 
(J2, 02) of the Hamiltonian of Eq. (7) for various values of H/hc corresponding to 
all the cases examined by numerical integration on the exact Hamiltonian in the 
previous section. The sum on the harmonics of the resonance angle 02 that appears 
in the potential has been truncated at k = 2, since it converges rapidly enough. 

In Fig. 6 we present the phase space portrait at three different values for J1 
with K = +0.1 mdyne//~ and G12 = 0. In Fig. 7 three cases are shown for the 
system with K = +0.1 mdyne//~ and G12 defined as in Eq. (4). In abscissa the 
angle 02 represents the phase relation of the two oscillators. For the ordinate 
J2 - (J1/2) (that is (I~ - /2) /2)  is proportional to the instantaneous energy differ- 
ence AE (AEiù considered in the previous paragraph corresponds to J2 - (J1/2) at 
O2(t = 0)).  AEma x can label univocally the phase space curves independently of the 
value of 02 at time t = 0. The three regimes in Figs. 6 and7, for the three increasing 
values of J1, correspond satisfactorily to the three regimes found by numerical 
integration. These figures taust be compared with Figs. 2 and 5. 

A D 

0 "Iz O R 2n 0 Il: 'ü'R 2n 

B E 

O Tt OR 2~ O R OR 2~ 

C F 
3 3 

1.5 1.5 

0 0 
o ~ ¢'R ZTC o TC ~R 2~ 

Fig. 6A-F .  Trajectories in the phase space of  the resonant angle and its conjugated action associated 
to the system of  two Morse oscillators coupled linearly through a potential term. One curve differs 
from the next for a constant difference in the values attributed to H/hc defined in Eq. (7) in the text 
(G12 = 0). ( A - C )  K = -0 .1  mdyne/•; ( D - F )  K = +0.1 mdyne//k. (A,D) Total action J1 = 0.3; (B,E) 
Jl = 1.0; (C,F) J1 = 3 (see text) 
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Fig. 7A-C .  Trajectory in the phase space of the resonant 
angle and its conjugated action associated to the system 
of  two Morse oscillators coupled linearly both potentially 
and kinetically. One curve differs from the next for a 
constant difference in the values attributed to H/hc 
defined in Eq. (7) in the text. K = +0.1 mdyne//~, 
G12 = - (1 /36)  a.m.u. -1. (A) Total action J1 = 0.1: (B) 
J1 = 0.3; (C) J1 = 1 

At low values for Jl (Figs. 6A, 6D, and 7A) all curves are closed, that is to 
say along each curve, 02 cannot assume all values and this corresponds to what 
we have called above phase locking. Furthermore, all curves are centered either 
at 02 = 0 or at 02 = n, and at J2 = J1/2 in both cases, so that both the symmetric 
and the antisymmetric modes are stable. Since each closed curve is symmetric 
with respect to J~/2, energy is exchanged between the two oscillators in the same 
way as in Fig. lA. Thus all modes are normal modes (the two oscillators have 
equal mean energies and are phase locked). 

At intermediate values for J~, as can be seen in Figs. 6B and 7B, one can 
notice that for negative K (of effective K) the symmetric mode is a saddle point 
and there are two new centers, one corresponding to positive AE (.12 > .Il~ 2) and 
one to negative AE (.12 < J~/2) exactly as it is observed in the PSS of Figs. 2B and 
5B. The same phenomenon is observed for the antisymmetric mode when K is 
positive (Fig. 6E). The curves are closed, thus the modes are phase locked, but, 
around the new centers, J2 is either always higher than Ja/2 or always lower, so 
that the mean energies of the two oscillators are not equal anymore. Thus the 
presence of these new centers corresponds to the transition modes found 
previously. In the first and second regimes all the curves in the PSS are confined 
to two noncommunicating regions, corresponding to two separate intervals for 
02; this can be related to the fact that the plots of  T vs. AEma,, in Figs. 3A and 
3B give different curves when starting from initial condition S ( 0 2 =  0) or 
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A (02 = r0. In the second regime, with the two new centers (in Fig. 6B for example 
at 02 = 0) the corresponding plot of T vs. AEmax of Fig. 3B for initial condition S is 
a cusp, indicating a transition between two families of  eurves. Indeed going along 
the 02 = 0 axis, from (J1/2) to J1 (AEgù from 0 to E r )  one first meets the two 
intersections of the small circles with the 02 axis and thus eovers twice the left side 
of the cusp of Fig. 3B (as indieated by the two different symbols for the data). 
Further increasing J2, one meets the large curves (reminiscent of  the first regime) 
encircling both the central saddle point and the new centers, and this can be put in 
correspondence with the right side of  the cusp of  Fig. 3B, that is normal modes. 

In the third regime, at higher J1, the centers assigned to transition modes 
disappear and the phase space portrait is like that of  a pendulum (Figs. 6C, 6F 
and 7C): the closed curves around the stable fixed point correspond to normal 
modes and the open curves (no phase locking), correspond to local modes. This 
picture, already well known in the literature [11-13] is related to the cusps of  Fig. 
3C, which is typical of  aßendulum too, as already noted. Furthermore, in the oase 
with K = -0 .1  mdyne/A for example, it is clear that the complete cusp can be 
obtained at 02 (t = 0) = n, that is where the resonance width is maximum (this 
corresponds to the circles in the Figure); at 02 (t = 0) = 0 instead, only the local 
mode side of  the cusp can be obtained (squares in the Figure). The value A E .  
at the cusp is proportional to value for/1 - / 2  of  the separatrix between open lines 
and closed curves. 

It can be noted that in the last regime we can approximate Eq. (7) by taking 
V ( J 2 , 0 2 )  = V(J2=J1/2, 02) as already done in [12] and [13]. In this way the 
perturbative part depends only on 02 and can be treated analytically more easily. 
Consequently, the relative phase 02 satisfies equation: 

02 = ½(o9, - oJ2) = (o9~/2D)(12 - I1) OC - A E  (8) 

Transition modes cannot be described in this approximation: indeed if AE is 
always negative (for example when E2 is always higher than El), Eq. (8) implies 
that 02 increases indefinitely and thus no phase locking can occur, opposite to 
what found in Fig. 4. 

Instead, the exact time behavior of  the resonant angle-action couple (02, J2) 
can be obtained from Hamilton's equations associated with the Hamiltonian 
equation (7), which are (ignoring the kinetic contribution): 

~2= 10ù_~(  «2 !,-«2 )~,21 
hcBO2 k = l  21ä--J221d-Jl]-J2,]  ~sink02 (9') 

1 OH 2Z(j ~_2J2)  
O~ = h c  e g 2  = 

eK ( - 31d + J2) + - -  
87"c2mc2z (ld -- J2)(21a - J2 )  In ( 6 ( 2 6  _ J1 + J2)J 

~K (31d - «,  + «2) ~ 2(Ic - «2) 2 ~ 
+ 8~2m«2~ (Ig -- J, + J2)(2Id -- J1 + ,/2) In (id--~d ~ ~22) j 

eK ~ [ J2(J1 -- J2 )  lk/2 --1 
+ 8n2mmc2z k ='~'äl - (2Id- -J~- i~d--~J l  + J2) J 

2Ia(J1-  2J2)(2Ia- J1) 1 
× (2Id -- J1 -1- J2)2(2Id -- J2) 2 k cos k02 (9") 
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The system of Eq. (9) admits fixed points (a z = 0, 0 2 --'~ 0) at 0 2 = 0, n and 
J2 = (Jl/2). Inserting J2 = (J~/2) into the three terms of Eq. (9"), they vanish 
identically. These fixed points have already been found in the literature and 
correspond to either symmetric or antisymmetric normal modes. However, at 
either 02 = 0 for K < 0 or 02 = ~ for k > 0 another couple of filxed points can 
be found. In order to prove this, let us take for simplicity only the first term in 
the cosine series of Eq. (9") and assume that the action at dissociation Id 
(which is equal to 25 in the oase studied in Sect. 2 of the present paper) is 
much greater than J~ and J2. One can then prove straightforwardly that the 
following couple of fixed points symmetrically disposed about (J~/2) arises on 
the lines 02 = 0 or n: 

where: 

• 12 = Ja/2 --b A (10') 

K 1 cos 

Equation (10") makes sense under the following circumstances: 

(a) i f K > 0 a t 0 2 = n ;  i f K < 0 a t 0 2 = 0 ;  

(K /4n2mc2)~  A 
(b) J1 >~ 2Z¢o h = 2-~ (11) 

where A = ]co+-o~ I, co+ and ~o_ being the harmonic frequencies of the 
symmetric and antisymmetric normal modes. The condition expressed by Eq. 
(11) has been obtained by substituting Ia =~h/2X [13]. Under those circum- 
stances: 

A = I (~~1)2 (K/492mc2)2] 1/2 
(2Z) 4(2I«) 2 A 

The latter couple of fixed points corresponds to transition modes: they 
are found to appear close to symmetric or antisymmetric normal modes accord- 
ing to the sign of K, as already proved in the numerical experiments presented 
in Sect. 2. 

The validity of the threshold for transition modes predicted by Eq. (11) 
was also tested numerically. In Table 1 we show the values of the total energy 
ET for which transition modes appear, according to the numerical integration 
of the classical equations of motions associated with the Hamiltonian of Eq. 
(1). Since, in a first approximation E T ~ J ~ ,  we can state that Eq. (11) is 
perfectly valid. In particular for the case ¢oh= 3000cm -1, Z = 6 0 c m - ~  and 
K = - 0 . 1  mdyne/A one obtains A =56 .5cm -~ and thus the threshold pre- 
dicted by Eq. (11) is J~ = 0.478. The approximate value for J~ = E~/o~ h calcu- 
lated from the entries of Table 1 is 0.521, which nicely compares with the 
predicted value. In Table 1 we have also reported the value Ema x for ET for 
which most of the transition modes have disappeared; also Ema, seems to be 
proportional to A/~, but we have not yet the analytical explanation for it. 

Finally, exactly the same value for J1 is found by studying the change in 
stability of the fixed point at 02 = 0 (n) and J2 = Jl/2, from the eigenvalues of 
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Table 1. Values of the total energy E T for the appearance 
(Enain) and disappearence (Ema~) of transition modes calcu- 
lated by numerical integration of Eq. (1) for a few values 
of ~ and K (co h = 3000 cm -1) 

Z K Emin a Emax b 
(cm -z ) (mdyneß) (cm -1 ) (cm -1 ) 

50 -0.1 1951 10200 
55 -0.1 1800 9300 
60 -0.1 1630 8600 
65 -0.1 1500 7700 
70 -0.1 1395 7100 
60 -0.05 800 4500 
60 -0.07 1150 5890 
60 -0.15 2460 11900 
50 -0 .2  3458 14700 

a Emi~ is the value of E r for which the symmetrie flxed 
point ehanges from stable to unstable 
bEmax is the value of Er  for whieh the curve for 
AEgù = 95% E r  is still inside the eurve for AEin = E r  (see 
text) 

the Hessian matrix T: 

O2H/hc O2H/hc ] 
~302 0J2 2 ~3j2 02H/hc ä2H/hc 

det(T - 2/) = det O2H/hc ä2H/hc = 22 + Oj 2 ~302 
00  2 00  2 OJ  2 

Making the simplifying assumptions on the actions discussed above, one can 
prove that at J2 = (Jl/2): 

4rc2mc ~ cos 02 + 8~2mc20)h2 

Indeed for K < 0 at 02 = 0, 2 goes from imaginary (stable fixed point) to real 
(unstable fixed point) for the same value of Jl ,  predicted in Eq. (11). For  K >~ 0 
this happens for 02 = ~. 

4. Conclusions 

In this paper the classical mechanics of the system of two linearly coupled 
equivalent Morse oscillators has been investigated at low to moderate total 
energy by two methods, namely by numerical integration and by a perturbative 
treatment in which the zeroth-order approximation has been based on local 
modes. By the first method we found that at low total energy ET only normal 
modes are present, at high ET values normal and local modes are coexisting, 
while in between a third kind of mode is predicted (the transition modes) 
showing some characteristic features of both normal and local modes. The 
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same kind of picture is obtained by the perturbative treatment that was pro- 
posed in the literature and that we have examined in full detail at variable total 
action. 

It may seem that the conclusions just drawn are dependent on the form of 
the Hamiltonian of Eq. (1) or on the values of  the parameters co), Xi, and K. 
As far as the latter parameter is concerned we tried values ranging from 
IKI =0.01 mdyne/A to IKI = 0.2mdyne/Ä, and values for Xl : ~ 2  from 50 to 
70 cm-~: we found that the same picture holds except that different thresholds 
for the different regimes are calculated numerically and predicted via perturba- 
tive treatment. As far as the form of the Hamiltonian is concerned, the 
insertion of  the kinetic interaction term G12 does not alter the picture. Besides, 
from preliminary investigations, we think that this picture holds also if the 
interaction potential term is nonlinear like, e.g., that proposed in [19]. 

In conclusion, it looks like that the existence of transition modes is related 
to the evolution of a stable fixed point to an unstable one. The mechanism 
implied by this evolution is first a loss of energy correlation between the two 
bond modes and later a loss of phase correlation. Only when these two 
independent processes are completed, the transition from normal modes to 
locat modes is complete. We then think that the existence of transition modes is 
fairly universal and could be spectroscopically checked. In order to find the 
spectroscopic "signature" of  transition modes, the following charactefistic 
should be kept in mind: from our calculations it appears that the intermediate 
energy region compfising transition modes is broader the larger the interaction 
constant is with respect to intrinsic bond anharmonicity (namely its width is 
proportional to A/X)- Further work is in progress in this field in our laborato- 
fies, together with the development of a classical perturbative treatment based 
on normal modes. 
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